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Abstract 
 
The problem of controlling Space Free-flying Robots (SFFRs), which have many degrees of freedom caused by their mechanical ma-

nipulators, is challenging because of the strong nonlinearities and their heavy computational burden for the implementation of model-
based control algorithms. In this paper, a chattering avoidance sliding mode controller is developed for SFFR as highly nonlinear-coupled 
systems. To fulfill stability requirements, robustness properties, and chattering elimination, a regulating routine is proposed to determine 
the proper positive values for the coefficient of sliding condition. To solve the run-time problem, an explicit direct relationship between 
the SFFR’s output of actuators (force/torque) and the measurement of distances from the corresponding sliding surfaces is also assumed. 
To reach perfect performance, the parameters are estimated recursively using the Kalman filter as a parameter estimator. The explicit 
dynamics of a 14-DOF SFFR is derived using SPACEMAPLE, and the recursive prediction error method (RPEM) is used to parameter-
ize the SFFR model. To alleviate the chattering trend, a multi-input sliding mode control law is proposed and applied to the given SFFR 
based on the online estimated dynamics to control its orientation and position to catch a moving target. To evaluate the new proposed 
algorithm in a more complicated condition, only on–off actuators are assumed for controlling the base of SFFR because it is the case in 
real systems. The obtained results show that the proposed regulated sliding mode controller can significantly reduce the chattering trend. 
Consequently, energy consumption will be substantially decreased, and running the control algorithm will be within a reasonable time 
duration.  

 
Keywords: 14-DOF space free-flying robots; Variable structure systems; Parameter estimation; Kalman filtering   
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
1. Introduction 

A Space Free-flying Robot (SFFR) includes an actuated 
base equipped with one or more manipulators to perform a 
variety of tasks in orbit. Distinct from fixed-based manipula-
tors, the spacecraft (base) of an SFFR responds to dynamic 
reaction forces caused by manipulator motions. To control 
such system, considering the dynamic coupling between the 
manipulators and the base is essential. To develop control 
systems for space assemblies, establishing a proper kinemat-
ics/dynamics model for the system is vital. This has been stu-
died under the assumption of rigid elements [1, 2] and also of 
elastic elements [3, 4]. Various studies on the nonlinear con-
trol problem of such systems [5-7] have been conducted be-
cause of the complicated nonlinearities in space systems, ma-
neuver time limitations, and restrictions in energy consump-
tion. Systems that include uncertainties, such as parametric or 

structural uncertainties, also need appropriate strategies to be 
controlled. Two important approaches used for dealing against 
nonlinearities and uncertainties are robust control and adaptive 
control [8-10]. 

One of the main approaches to robust control is Sliding 
Mode Control (SMC) [11]; it is usually accompanied by a 
phenomenon called “chattering” [12]. Chattering should be 
avoided to reduce the energy consumption of the control sys-
tem and to prevent any potential damages on actuators, espe-
cially in the case of the on–off type. Due to the high-frequency 
content of chattering, it can also easily stimulate flexible mod-
es, which in turn may cause instability. To alleviate the chat-
tering phenomenon, saturation functions instead of switching 
operators that degrade the control precision can be used. An 
auxiliary continuous control may be added to the control input 
obtained from the conventional sliding mode design [13]. This 
continuous control will eventually replace the time average of 
the discontinuous control in the steady state, and the switching 
gain goes to zero when the distance from the sliding surface 
decreases toward zero, thus eliminating chattering. Although 
the steady-state response of this controller is acceptable, this 
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method is not very efficient for systems with time varying 
desired states. For multi-input nonlinear systems, where the 
equations are completely coupled, the selection of controller 
parameters to reach acceptable response is not straightforward 
[14-17]. A serious problem in the model-based control of ro-
botic systems is that the computational burden imposed on the 
robot computer is heavy, causing the real-time exploitation of 
the control algorithm to take high costs [18]. To date, some 
solutions have been proposed to solve this problem based on 
identification and estimation strategies [19-33]. To solve this 
problem, we propose a model that can be supposed directly 
between actuators’ outputs and the sensors measurements of 
distances from the sliding surfaces. Through this, the compu-
tational task will be rid of vigorous mathematical calculations 
of Jacobian matrices and can be therefore used in real time. 

In this paper, focusing on the chattering phenomenon to ful-
fill energy limitations in space, a new approach is proposed to 
alleviate (ideally eliminate) the chattering trend. To fulfill the 
stability requirements, robustness properties, and chattering 
elimination, a regulating routine is proposed to determine the 
proper positive values for the coefficient of the sliding condi-
tion. The dynamic model of an SFFR is obtained through the 
SPACEMAPLE code. Derivation of the equations of motion 
results in explicit derivations of the system’s mass matrix and 
of the vectors of nonlinear velocity terms and generalized 
forces. Unlike recursive dynamics formulations, the obtained 
dynamics model is very useful for dynamics analyses, design 
studies, and development of model-based control algorithms. 
The recursive PEM method is used for the parameterization of 
the explicit direct model between actuators’ output and the 
measurement of the distances from the corresponding sliding 
surfaces. Afterwards, the 14-DOF SFFR is simulated as a 
highly nonlinear and coupled system. The actuators acting at 
the base of the SFFR are primarily assumed as continuous 
servos with saturation limits, and to illustrate the merits of the 
new proposed algorithm, they are subsequently considered as 
on–off discontinuous actuators. Despite the fact that the con-
ventional sliding mode controller cannot successfully control 
the system in the latter case, the obtained results show that the 
proposed regulated sliding mode controller can substantially 
alleviate the chattering trend. Consequently, the system energy 
consumption will also be significantly decreased when the 
control algorithm is run in a reasonable time duration. 

 
2. SFFR dynamics modeling 

A typical maneuver of an SFFR is of relatively short length 
and duration; thus, microgravity and dynamical effects caused 
by orbital mechanics are negligible compared with control 
forces. Therefore, the motion of the system is considered with 
respect to an in-orbit inertial frame of reference (XYZ), and 
the system potential energy is taken as equal to zero. In Fig. 1, 
the general configuration of an SFFR and its essential coordi-
nates are shown.  

The general Lagrangian formulation for such system yields 

the following: 
 

i ; 1, ,
i i

d T T Q i N
dt q q

⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎜ ⎜⎟ ⎟− = =⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜∂ ∂⎝ ⎠ ⎝ ⎠
 (1) 

 
where T  is the system kinetic energy; N  is the system 
degrees-of-freedom; and iq , iq , and iQ  are the i-th ele-
ments of the vector of the generalized coordinates, generalized 
speeds, and generalized forces, respectively. To apply Eq. (1) 
and obtain dynamics equations, the system kinetic energy, T , 
must first be derived. This can be written as follows: 
 

1
2 P P

M
T dM= ⋅∫ R R  (2) 

 
Where, M  defines the system-distributed mass and PR  is 
the velocity of an arbitrary point P, which can be evaluated 
based on the direct path kinematics approach for multiple 
manipulator SFFR with rigid elements that was developed in 
Moosavian and Papadopoulos (1997) as follows: 
 

0 0
(0)

0 /: p C p CP Base ω∈ = + ×R R r                 (3) 
 

where 
 

0
( ) ( ) ( )

0 0

1
( ) ( ) ( ) ( ) ( )

( )/
1

:

( ) ( )

i

m m m
i Cp

i
m m m m m

k k k i i mp Cik

P Link ω

ω ω
−

=

∈ = + × +

× − − × −∑
R R r

r l l r
  

 
describes the spacecraft center of mass velocity; 

0/p Cr  de-
scribes the position of P with respect to the spacecraft center 
of mass; vectors ( )m

il , ( )m
ir  are the body-fixed vectors that 

describe the position of joints i and i+1 with respect to Ci, as 
seen in Fig. 1; and 0ω  and ( )m

kω  are the angular velocity of 
the spacecraft and of the k-th link of the m-th manipulator, 
respectively. For single DOF joints, the angular velocity of an 
individual body can be obtained as follows: 

 
 
Fig. 1. General configuration and essential coordinate systems for the
description of a space robotic system. 
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where ( )m

iz  is a unit vector along the axis of rotation of the i-
th joint of the m-th manipulator, and ( )θ m

i  is the correspond-
ing joint angle rate. 

The substitution of Eq. (3) for PR  into Eq. (2) yields the 
following: 

 

/ /0 0
( ) ( )

1
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 (5) 
 
This can be simplified to obtain 
 

0 1 2T T T T= + +  (6a)  
 

with 
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and ( )m

Ci
r  describes the velocity of Ci, which can be obtained 

as follows: 
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Note that the expressions for T  are in terms of invariant 

body-fixed vectors. To conduct the required differentiations in 
Eq. (1), appropriate transformation matrices for each term 
must be employed. The vector of the generalized coordinates 
is chosen as follows: 

 

0 0( , , )T T T T
C δ θ=q R  (7a) 

 
This can be arranged as follows: 
 

(0) (1) ( )( , , , )
T T Tn T=q q q q  (7b) 

 
where  

0
(0)

0( , d )T T T
C=q R  (7c) 

( ) ( ) ( ) ( ) ( )
1 2q ( , , , )

m

m m m m m T
Nθ θ θ= =q  (7d) 

 
with 0δ  as the spacecraft Euler angles, and ( )θ m

i  
(i=1,…,Nm) describing the m-th manipulator joint angles. 
Using Eq. (6) and applying the general Lagrangian formula-
tion, Eq. 1, the equations of motion are obtained as follows: 
 

0 0 0 0( , ) ( , , , ) ( , )δ θ δ δ θ θ δ θ+ =H q C Q  (8) 
 

where the vector of generalized coordinates q is defined in 
Eq. (7); C is an N× vector that contains all the nonlinear ve-
locity terms (in a microgravity environment); and Q is the N× 
vector of the generalized forces (N = K + 6) given by the fol-
lowing: 

 

6 1 ( ) ( )
0, 0, , ,

1 1 1 1 1

i iNf fn m
T m T m

p p i p i p
K p m i p

τ
×

× = = = =
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∑ ∑∑∑0

Q J F J F   

 (9) 
 

0, pF  is the p-th external force or moment applied on the 
spacecraft; ( )

,
m

i pF  is the p-th external force or moment applied 
on the i-th body of the m-th manipulator; fi  is the number of 
applied forces or moments on the corresponding body; and 

( )
,
m

i pJ  is a Jacobian matrix corresponding to the point of force 
or moment application. Eq. (9) can be obtained based on the 
definition of the generalized forces. This equation can be rear-
ranged in a way that the actuator forces or torques are dis-
played explicitly. If all external forces, except the ones applied 
on the spacecraft, are zero, Q can be written as  

 
0

0

1

s

Q s

Kτ ×

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

f

Q J n  (10) 

 
where 0

sf  and 0
sn  are the net force and moment applied 

on the spacecraft, respectively, and QJ  is an N × N Jacobian 
matrix. For a well-designed system, QJ  remains nonsingular, 
(i.e., any required Q can be produced by the system’s actua-
tors). To obtain an explicit dynamics model of a multiple ma-
nipulator SFFR, mathematical analyses are presented to help 
calculate the mass matrix, the vector of nonlinear velocity 
terms, and the generalized forces. 
 
3. Explicit dynamics model 

3.1 Mass matrix 

To obtain the mass matrix H, according to Eq. (8), the acce-
leration terms in each of the three formats have to be consi-
dered. Therefore, ijH  is computed by the following: 
• Substituting each term of the system kinetic energy into 

the corresponding format 
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• Finding the coefficients of q  in each format  
• Adding the results obtained from the three formats for 

each term 
• Adding the results obtained for all of the terms 
 
Disregarding the details, this procedure eventually yields 

the following: 
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                                            (11) 
 

where ( )m
kω  is given by Eq. (4), and ( )m

Ck
r  can be substituted 

from the following (see Fig. 1): 
 

1
( ) ( ) ( ) ( ) ( )

0
1

1, ,
( )

1, ,

i
m m m m m

k k iCi
mk

m n
i N

−

=

⎧ =⎪⎪= + − − ⎨⎪ =⎪⎩
∑r r r l l  (12) 

 
The notation employed here is consistent to Kane and Le-

vinson (1985) (i.e., a left superscript on partial derivatives 
refers to the frame where the differentiation has to be taken, 
whereas it is left blank for the inertial frame). 

 
3.2 Vector of nonlinear terms 

The vector of nonlinear velocity terms in Eq. (8) can be 
computed by dropping the acceleration terms in each of the 
obtained formats. Thus, iC  is computed following the same 
procedure as described for computing the ijH , that is, by 
considering the coefficients of q  and any other term (except 
those which correspond to q ) in each format. This approach 
yields the following: 
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Expressing the angular velocity as a function of the Euler rates, 
vector 2C  can be combined with the first term of Eq. (13a). 
The vector of nonlinear velocity terms can then be written as 
follows: 
 

0 0 0 0( , , , ) ( , , , )δ δ θ θ δ δ θ θ=C C q  (16) 
 

This is a representation of nonlinear velocity terms pre-
ferred in the development of adaptive control algorithms. 

 
3.3 Vector of generalized forces 

As described in Eq. (9), if all external forces except the ones 
applied on the spacecraft are zero, the vector of generalized 
forces Q is written as follows: 
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Assuming that 0

sf  and 0
sn  are applied at the spacecraft 

center of mass, 0J  is defined as  
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Therefore, QJ  is obtained as follows: 
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which can be substituted into Eq. (10) to obtain Q. This com-
pletes the derivation of the dynamics model for a multiple-arm 
SFFR with rigid elements. The computation of the obtained 
dynamics equations can be conducted either by numerical or 
symbolical programming tools [2]. 
 
4. Regulated SMC Law 

A multi-input nonlinear system can be defined as follows: 
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where u  describes the control input array, and x  is defined 
as the state vector composed of ix ’s as state arrays: 
 

1[ .... ]in T
i i i ix x x −=x  (21) 

 
where if  represents the dynamics of the ith state as a function 
of state vector x ; ijb  is the corresponding element of input 
matrix “B” that describes the gain function of the jth input on 
sub-system “i”; in  is the order of the corresponding differen-
tial equation; and “m” is the number of independent inputs. 
The control aim can be expressed as making the state vector 
x  follow the desired time-dependent vector dx . In the pres-
ence of modeling uncertainties, it is assumed that all parame-
tric uncertainties appear in the input matrix B or its estimated 
value B̂ , and that it is nonsingular in the state space domain. 
Therefore, it can be written as follows: 
 

( ) ˆ

, 1,......,

ˆ
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=
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− ≤

B I + ∆ B

 (22) 

 
where îf  is the estimated value of if  that can be obtained 
from the dynamics model, and ij∆  can yield the error values 
of the input matrix estimation procedure. The exact value of 

ij∆  is unknown, but the upper-bound limitation (i.e., ijD ) 
can be substituted. Therefore, the distance from a sliding sur-
face is defined as 
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λ
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where iλ ’s are controller parameters and time constants in a 
low pass filter sequence [11], and ix  describes the tracking 
error of ix . Eq. (23) can be written as 
 

( ) ( )11 ii
i
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where ( )1i

i

n
rx −  is computed based on the error between ix  

and 
dix . For instance, considering a system with two state 

arrays and two independent inputs, it can be obtained by  
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which yields the following:   
 

1,2
i dr i i ix x x iλ= − =  (26) 

 
Therefore, in a general case, the control inputs must be de-

termined in a way that satisfies the following sliding condi-
tion:  

21 0
2 i i i i

d s s
dt

η η≤− >  (27) 

 
where iη ’s are controller parameters and are chosen as posi-
tive values reflecting the way states are converged to their 
sliding surfaces. The higher values of iη  indicate that the 
corresponding state reaches its sliding surface faster. Assum-
ing that iK ’s are positive values that must be determined to 
satisfy the sliding condition (27), then the control law is ob-
tained as 
 

( ) 1 ˆˆ n
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where iK ’s can be obtained using Filippov’s Construction of 
Equivalent Dynamics [11] by calculating 0is =  (for i = 
1,…,n), which yields the following: 
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Eq. (29) defines a set of “n” equations with “n” unknowns 

(i.e., iK ’s). To solve these equations, iη ’s should be chosen. 
As explained before,  iη is a factor that indicates the speed of 
the corresponding state in approaching its sliding surface. 
Therefore, if iη  can be determined in such a way that based 
on the absolute value of the distance from the sliding surface, 
the speed of the corresponding state becomes lower and 
reaches zero on the surface, then the performance will be as it 
is desired, and chattering will be substantially alleviated, if not 
vanished. Therefore, rather than the conventional heuristic 
method of choosing iη , that the selection is based on the fol-
lowing Etta Regulating Procedure (ERP) is proposed: 

 
*

0

*
0

1( ) ( 1 ) [1 (1) sgn(| | )]
2

1 [1 (1) sgn(| | )]
2

i
i

S
i i acti

i i acti

t e s s

s s

η η

η

−= − × − × −

+ × + × −
 (30) 

 
A less complicated form is as follows: 
 

0( ) 1 i
i

S
i t eη η −= −  (31) 

 
In Eq. (30), the parameter *

actis  is a positive constant value 
that specifies the activity margin of the ERP mechanism. For 
instance, if the transient response of the system is more impor-
tant than the smoothness of the approaching rate of the system 
state vector toward the sliding plane, *

actis  should be of small 
value, whereas the value of 0iη  should be large enough. On 
the other hand, if the smoothness of the response is more im-
portant, *

actis  can be given a large value. To select the initial 
value, 0iη , any large value can be chosen. In the absence of 
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uncertainties, there are various aspects in the conventional 
heuristic method of choosing  iη . First, in terms of noise ef-
fects, the controller must be capable of dealing against the 
separation of the state trend from the corresponding sliding 
surface. Therefore, with a reasonable high value of iη , the 
noise effect will decrease. On the other hand, after reaching 
the states to the sliding surface, chattering may occur. Unfor-
tunately, the amplitude of this phenomenon increases along 
with a higher value of iη . Therefore, the noise rejection cha-
racteristics are in conflict with the chattering effect reduction. 
However, following the proposed procedure, starting with 
high initial values for 0iη , will compensate for the two effects 
and eventually alleviate the chattering. The main concern is to 
control the momentum of the system. In a conventional sliding 
mode controller with a constant switching gain, chattering will 
occur when the amplitude is proportional to the iη . When the 
state vector of the system reaches the sliding surface, it will 
pass through the sliding surface because of the system’s iner-
tia if the momentum of the system is not equal to the desired 
momentum (according to the desired trajectory). Thus, when 
the state vector is in the vicinity of the sliding surface and 
approaches the surface, the amplitude of the chattering will 
decrease if the applied input is regulated to set the system 
momentum. On the other hand, that the value of iη ’s will be 
set properly when the system state vector goes farther from the 
sliding surface must be guaranteed. Eq. (30) can be replaced 
by a simpler form such as Eq. (31); however, the regulating 
function is continuous in this case. The sliding mode control-
ler equipped with the new proposed ERP has a broad margin 
of stability against parametric uncertainties, variation of con-
troller parameters, and actuators limitations [14]. 

 
5. Recursive identification algorithms 

Based on the previous sections, designing the sliding mode 
controller requires Jacobian matrices ˆ,Q qJ J , mass matrix 
(i.e., H), and the vector of the non-linear velocity terms C . 
The most common way to design a controller with respect to a 
given desired trajectory corresponds to the following steps: 
(1) Determination of Q̂  based on the used control algorithm 
(2) Conversion of Q̂  to Q  using the q̂J  Jacobian matrix  
(3) Quadrature of the motion equations described in the gene-

ralized coordinate and finding the q  and q  
(4) Conversion of Q  to the actuator space using the QJ  

Jacobian matrix to command the actuators 
(5) Conversion of q  to the task variables (output variables) 

( q̂ ) using the q̂J Jacobian matrix and the calculation of 
the tracking errors  

 
Due to the presence of massive mathematical terms in the 

mentioned matrices and vector C, the computational burden 
imposed on the robot computer will be drastically high. There-
fore, implementing the sliding mode control or any model-
based control algorithm for real-time purposes is not possible. 
One way to solve this problem is by building a linear model 

and by setting its parameters corresponding to the robot’s 
measured input(s) and output(s). On the other hand, because 
the considered robotic system is non-linear, the regulation of 
the parameterized model parameters should be continued with 
a priori knowledge of robot dynamics. To fulfill this, recursive 
identification methods can be used, with the dynamics of the 
robot assumed to consist of a number of prominent sub-
systems. These sub-systems are shown as a couple (i, j). The 
index “i” indicates the thi  measured output, whereas the index 
“j” indicates the thj  measured input. The output of the system 
is considered the “distance from the sliding surface” because 
the control algorithm is chosen as the SMC; the input of the 
system is appointed as the “actuators force/moment” applied to 
the robotic system; and the spacecraft and sub-systems are the 
relationships between the input and output. By choosing these 
options, the complexity of the equations of motion is relieved 
completely, and simulated output can be used directly in the 
control algorithm. The recursive estimation of the parameters 
vector θ̂  is given by the following difference equation: 

 
[ ]ˆ ˆ ˆ( ) ( 1) ( ) ( ) ( )t t t t t= − + −θ θ K y y  (32) 

 
where ˆ( )tθ  is the parameter vector estimation at time t; y(t) 
is the vector of the observed output; and ˆ ( )ty  is the one-step 
prediction of the system’s output with respect to a priori ob-
servations of the input and output. K(t) is the gain matrix of 
the estimation process, which determines the way the current 
prediction error ( ˆ( ) ( )t t−y y ) affects the update of the parame-
ter estimation.   

The choice for the K(t) is typically the following equation: 
 

( ) ( ) ( )t t t=K Q ψ  (33) 
 
In Eq. (33), the vector ( )tψ  is the vector of regressors, and 

it contains old values of the observed input and output. The 
one-step prediction of the system is given by 

 
ˆˆ ( ) ( ) ( 1)Tt t t= −y ψ θ  (34) 

 
Matrix ( )tQ  regulates the adaptation gain and gives the di-

rection when the estimation is pursued. The optimal value of 
( )tQ  is obtained from Riccati’s forward equation solution as 

it is given by 
 

2

1
2

( 1)( )
( ) ( 1) ( )

( 1) ( ) ( ) ( 1)( ) ( 1)
( ) ( 1) ( )

T

T

T

tt
R t t t

t t t tt t
R t t t

⎧ −⎪⎪ =⎪⎪ + −⎪⎪⎨⎪ − −⎪⎪ = − + −⎪⎪ + −⎪⎩

PQ
ψ P ψ

P ψ ψ PP P R
ψ P ψ

 (35) 

 
In Eq. (35), drift matrix 1R  is the covariance matrix of the 

true system parameters change, which logically assumes a 
random walk: 

 
0 0

1

( ) ( 1) ( )

( ) ( ) ( )T

t t w t

E w t w s R t s

θ θ

δ

= − +
⎡ ⎤ = −⎢ ⎥⎣ ⎦

 (36) 
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2R  is the variance of the innovations in the true system if it 
is declared in the linear regression format as 

 

0

2
2

( ) ( ) ( ) ( )

( )

Ty t t t e t

R E e t

⎧⎪ = +⎪⎪⎨ ⎡ ⎤⎪ =⎪ ⎢ ⎥⎣ ⎦⎪⎩

ψ θ
 (37) 

 
Finally, to solve the recursive equations, covariance matrix 
1R , variance 2R , (0)P , and (0)θ  should be appointed in 

the beginning. To describe a general input–output linear mod-
el for a system with input u and output y, the following struc-
ture is introduced: 

 
( ) ( )( ) ( ) ( ) ( )
( ) ( )

B q C qA q y t u t nk e t
F q D q

= − +  (38) 

 
where  
 

1 1
1 1
1 1

1 1

1
1

( ) 1 ... ; ( ) ...

( ) ... ; ( ) 1 ...

( ) 1 ...

na nb
na nb
nc nf

nc nf

nd
nd

A q a q a q B q b q b q

C q c q c q F q f q f q

D q d q d q

− − −

− − − −

− −

⎧⎪ = + + + = + +⎪⎪⎪⎪ = + + = + + +⎨⎪⎪⎪ = + + +⎪⎪⎩

  

                                                    (39) 
 

Several elaborations of the general linear model given by 
Eq. (38) can be extracted, such as ARX, ARMAX, BJ, OE, 
and PEM [34-36]. By mathematical manipulation, the general 
model described by Eq. (38) can be rewritten as 

 
( ) ( ) ( ) ( ) ( ) ( )P q y t R q u t nk S q e t= − +  (40) 

 
Using the above difference equation, the corresponding re-

gressor vectors can be written as follows: 
 

[
]

( ) ( 1) ... ( ) ( 1)

... ( 1) ( 1)... ( ) T

t y t y t np u t nk

u t nk nr e t e t ns

= − − − − − −

− − + − −

ψ
 (41) 

 
To reach the ARX or ARMAX structure, the order of the 

general model described by Eq. (38) should be chosen as 
 

: ; ; 0;
: ; ; ;

ARX np na nr nb ns
ARMAX np na nr nb ns nc

⎧ = = =⎪⎪⎨⎪ = = =⎪⎩
 (42) 

 
5.1 Prediction error method algorithm  

By minimizing a cost function defined for the prediction er-
ror ( )e t , a general model is parameterized as follows [36]: 

 

[ ] [ ]

( )

1

2

1
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N

t
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−
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After some mathematical manipulating, the following result 
can be obtained: 
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 (44) 

 
6. SMC controller design 

Using the expressions for the kinetic and potential energies 
and by applying Lagrange’s equations for a space robotic sys-
tem as shown in Fig. 1, the dynamics model can be obtained 
as follows:  

 
( ) ( , )+ =H q q C q q Q  (45) 

 
where q is the vector of the generalized coordinates; C con-
tains all nonlinear velocity and gravity terms; and Q is the 
vector of the generalized forces. Gravity terms are practically 
zero in microgravity environments and can therefore be neg-
lected in the design of control laws. In terrestrial applications, 
these terms may cause static positioning errors in the control; 
in such case, they must be compensated separately. Therefore, 
in this paper, the C vector contains only nonlinear velocity 
terms. The output velocities q̂ , which are the rates of va-
riables to be controlled (outputs), are obtained from the gene-
ralized velocities q  using a Jacobian matrix q̂J as 
 

ˆˆ ( )= qq J q q  (46) 
 
Assuming that this Jacobian matrix is square and non-

singular, Eq. (45) can be written in terms of the output va-
riables as follows: 

 
ˆ ˆˆ ˆ( ) ( , )+ =H q q C q q Q  (47) 

 
where  
 

1
ˆ ˆ

T

ˆ

ˆ

ˆ ˆq q
ˆ

ˆ ˆ

T
q q

T
q

− −

−

⎧⎪ =⎪⎪⎪⎪ −⎪⎨⎪⎪⎪⎪ =⎪⎪⎩

= −

H J H J

Q J Q

C J C H J q  (48) 

 
The above dynamics model is obtained through the 

SPACEMAPLE code [2]. The derivation of the equations of 
motion results in an explicit derivation of the system’s mass 
matrix and of the vectors of nonlinear velocity terms and ge-
neralized forces. Unlike with recursive dynamics formulations, 
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the obtained dynamics model is very useful for dynamics ana-
lyses, design studies, and development of model-based control 
algorithms. To design a sliding mode controller based on Eq. 
(28), the dynamics of the system and the gain matrix of inputs 
are defined as follows:     

    
q̂ = f + Bu  (49) 
 

where 
 

1

ˆˆ ( ) ( , )

ˆ ( )

ˆ

−

⎧ ⎡ ⎤⎪ =−⎪ ⎢ ⎥⎣ ⎦⎪⎪⎪⎪⎪ ⎡ ⎤=⎨ ⎢ ⎥⎣ ⎦⎪⎪⎪⎪⎪⎪⎪⎩

f H q C q q

B H q

u = Q

 (50) 

 
The distance from the sliding “hyper surface” is defined as 

an 1n×  column vector, where n is the system’s DOF, and its 
components are defined as follows: 

 

ˆ ˆ

i i i i i i

i i id

ds e e e
dt

e q q

λ λ
⎛ ⎞⎟⎜= + = +⎟⎜ ⎟⎟⎜⎝ ⎠

= −
 (51) 

 
Following the sliding mode controller design described in 

Eqs. (20) to (29), the command input, ˆ
comQ , is obtained in the 

robot workspace coordinate system as follows: 
 

1ˆ ˆ( ) [ sgn( )]com est est desQ B f q e K sλ−= − + − −  (52) 
 
In Eq. (52), (.)est  describes the estimation from the system’s 

dynamics vector or the input gain matrix. These estimations 
are usually obtained from the mathematical modeling of the 
system’s dynamics. As mentioned before, uncertainties in the 
system’s dynamics and uncertainties in the input gain matrix 
are considered in the controller design procedure. In Eq. (52), 
λ and K are the diagonal matrices with positive components. 
Matrix λ  is determined heuristically with respect to the 
system’s behavior in the transient and steady state. Based on 
various case studies, this matrix can be chosen at least five 
times more than the sliding condition parameter described in 
Eq. (27) to obtain acceptable performance. K is the switching 
matrix, and its components are determined from Eq. (29). The 
sgn (s) is a column vector, with its components being one 
multiplied by the “sign” function of the corresponding alge-
braic distance from the sliding surface: 

 
[ ]1 1sgn( ) sgn( )...sgn( ) T

ns s s=sgn(s)  (53) 
 
With a transform made by the corresponding Jacobian ma-

trix, the command input described in the robot workspace can 
be mapped to the joint space (generalized coordinate) as fol-
lows: 

0
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f

n J  (54) 

 
Finally, the control input in the generalized coordinate 

space is obtained as 
 

1
ˆ ˆ( ) ( ) [ sgn( )]T

com q est est desQ J B f q e K sλ−= − + − −  (55) 
 
Next, a 14-DOF SFFR is simulated to compare the perfor-

mance of the new proposed RSMC algorithm and the conven-
tional SMC. 

 
7. Simulation results 

In this section, the simulation results for several cases are 
presented. In the first step of simulation, we evaluate the per-
formance of the new proposed SMC algorithm (i.e., RSMC 
along sinusoidal desired trajectories). As mentioned before, a 
PEM parameterized model is used in the control algorithm 
instead of a mathematical model. The performance of the pre-
diction mechanism is shown in all simulations. Afterwards, 
the performance of the new proposed RSMC algorithm is 
evaluated through simulation and compared with the conven-
tional SMC. The task aims to capture a moving object based 
on the planned trajectories. The system is a 14-DOF SFFR, as 
shown in Fig. 2 and described in [15]. The geometric and 
mass properties are given to the SPACEMAPLE code to ob-
tain the dynamics model of the SFFR in a relevant symbolic 
format [2]. 

The actuators acting at the base of the SFFR are primarily 
assumed as continuous servos with saturation limits. In addi-
tion, they are subsequently considered as on–off actuators to 
illustrate the merits of the new proposed algorithm. Clearly, 
the actuators at the joints of the manipulators are continuous 
servos. 

 
7.1 Servo actuators model  

In the active control of SFFR, actuators have various per-

 
 
Fig. 2. A three-manipulator/appendage SFFR. 
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formance characteristics. Real actuators cannot generate the 
exact command input sent from the controller, which in turn 
deteriorates the system performance. In summary, the most 
important problems are the following:  
(1) Upper-bound value (saturation limit) that can be generated 

by the actuator 
(2) Actuator resolution, namely, the capability of the actuator 

to track a continuous input command with the same kind 
of smoothness 

(3) The finest value of input that can be generated by the actu-
ator (input threshold) 

 
The actuator with the above considerations, as modeled in 

Simulink, is shown in Fig. 3. Three switches plus a dead zone 
provide the threshold of input, that is, if the threshold of the 
input is 0.0004 N.m., the threshold of switches 1, 2, and 3 
must be 0, 0.0004, and –0.0004, respectively (Fig. 3). To illu-
strate the actuator performance, a sample response is shown in 
Fig. 4. Studies on using on–off actuators in such systems can 
be found in [14]. 

In the first step of simulations, that the desired trajectories 
of the SFFR are arbitrary sinusoidal functions, as shown in Fig. 
5, is assumed. The frequencies and amplitudes of each sub-
system are different from the other sub-systems. In Fig. 6, two 
samples of the estimated distances from the sliding surfaces 
are shown. To show the chattering phenomenon and the per-
formance of the ERP mechanism, an appropriate magnifica-
tion is also conducted. The figure shows that the chattering 
drastically becomes calm due to the activity of the new SMC 
algorithm. The quality of the other sub-systems in the distance 
from the sliding surface is similar to that in Fig. 6. To show 
chattering in control inputs, the applied moments to the space-

craft is shown in Fig. 7, whereas one of the joints of the mani-
pulators is shown in Fig. 8. The new proposed algorithm has a 
significant effect in decreasing chattering. Fig. 9 shows the 
results obtained from the recursive PEM. The orders of the 
model have been chosen as [2 3 1 1 1], and thus the number of 
parameters that must be evaluated recursively is 8. In the 
RSMC, due to the lesser intensity of chattering, the estimated 
parameters have smooth variations in comparison with those 
in CSMC. In Table 1, the mean values and variances of the 
estimation error are shown.  

 
8. Trajectory planning to capture a moving target in 

space  

In this section, the SMC control is applied to the SFFR 
along a designed trajectory to pursue a target. The escaping 
target that must be captured by the SFFR travels through 

 
Fig. 3. Servo actuators model in simulink. 
 

 
 
Fig. 4. Actuator response corresponding to a sinusoidal control de-
mand. 

 
 
Fig. 5. Three desired trajectories for sub-systems 2, 5, and 8.  

 

 
 

 
 
Fig. 6. Distance from the corresponding sliding surface and its magni-
fication to show the chattering phenomenon (Up: RSMC; Down: 
CSMC).  
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three-dimensional spaces with a constant velocity vector, as is 
the case for a passive object. The coordinated motion of the 
given SFFR is planned as follows: 

The control of the spacecraft Euler angles that make the 
symmetric motion for the two end-effectors throughout the 
capturing mission and the control of the distance between the 
spacecraft’s center of mass and the moving object fulfill the 
dexterous motion of the end-effectors. Upon reaching the 
moving object, the manipulators remain in their home confi-

guration, except the antenna that must have a controlled orien-
tation throughout the maneuver. When the object is reachable 
by end-effectors, the manipulators start moving to capture the 
object, while the control system must retain the desired Euler 
angles and distance between the spacecraft and the target.  

Fig. 10 shows the tracking position errors for the two end-
effectors. Until 40t Sec≈ < > , the manipulators remain in 
their home configuration; the locks of the joints are released; 
and at this time their initial tracking error appears while time 

Table 1. Mean values and variances of estimation error for two controllers. 
 

 Mean value Variance 

Sub-system (2, 7) (5, 12) (8, 14) (2,7) (5, 12) (8, 14) 

CSMC 0.0148 0.0096 0.0116 0.0712 0.0474 0.0409 

RSMC 0.0122 0.0087 0.0082 0.0711 0.0474 0.0407 
 

      
 
Fig. 7. Applied moment to the spacecraft (base) of the SFFR (Up: CSMC; Down: RSMC). 
 

      
 
Fig. 8. Applied torque to the joint of the SFFR manipulator (Up: CSMC; Down: RSMC). 
 

      
 
Fig. 9. Estimated parameters for the PEM model using recursive Kalman filter for the direct model between actuators’ output and the measurements 
of robot sensors [Top: CSMC system; Bottom: RSMC system; sub-system (5,3)]. 
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vanishes. The tracking position errors are calculated in terms 
of the reference coordinate components. Tracking errors for 
both conventional SMC and RSMC algorithms are almost the 
same. However, in the new RSMC algorithm, the chattering 
phenomenon is reduced drastically, but the performance of the 
controller remains similar to the conventional SMC. Chatter-
ing can be observed in the control inputs as shown in Fig. 11.  

To show the effect of the new chattering elimination algo-
rithm, RSMC, the control forces applied to the base of SFFR 
(spacecraft), are shown in Fig. 11. The RSMC algorithm has a 
significant effect on the decrease in amplitude of the chatter-
ing phenomenon. The control moments applied to the base of 
the SFFR are similar to the forces shown in Fig. 11. In Fig. 12, 
the control torques applied to the joints of the first manipulator 
are shown, where those of the second manipulator are similar. 

For comparison, Chattering Intensity Factor (CIF) is de-
fined as follows: 

 
Energy Consumed under application of Control Law

Nominal Required Value of Energy
aCIF =   

 (56) 
 

where the nominal value is obtained by solving the inverse 
dynamics. This factor serves as a reference to compare the 
control algorithms in terms of energy consumption and in turn 
the chattering characteristics. In Fig. 13, the total energy con-
sumed by both conventional SMC and RSMC algorithms is 
plotted. In the RSMC algorithm, the total consumed energy is 
considerably decreased compared with the conventional SMC 
due to the lower amplitude of the chattering. To show the 

      
 
Fig. 10. Tracking position errors of the SFFR end-effectors (Left: First manipulator; Right: Second manipulator). 

 

      
 
Fig. 11. Control forces applied to the base of the SFFR (Left: Conventional SMC; Right: RSMC). 
 

      
 
Fig. 12. Control torques applied to the first manipulator (Left: Conventional SMC; Right: RSMC). 
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chattering elimination quantity, CIF values are compared in 
Table 2. The nominal value of energy consumption is obtained 
from inverse dynamics based on the given trajectories. The 
RSMC algorithm consumes approximately 2.9 times the no-
minal value, whereas the conventional SMC consumes 17.2 
times the nominal value. These results show the major advan-
tage of the new SMC algorithm in lowering the actuators’ 
activity. In the next step, to show the effectiveness of the new 
proposed algorithm in handling the system in the presence of 
vigorous limitations in actuators, the force or moment actua-
tors of the spacecraft are replaced by on–off ones.  
 

9. Application of the new RSMC algorithm to the 
SFFR with on-off actuators at the base 

In this step, that the actuators of the SFFR are of the on–off 
type to avoid delivering exactly the commanded control input 
produced by the control algorithm is assumed. To plan the law 
of on–off actuators, that the chattering-eliminated SMC com-
mands are suitable signals due to the avoidance of control 
input oscillations around zero is proposed [13]. The model for 
the actuators is shown in Fig. 14. In this model, the constant 
amplitude is determined based on the average calculation of 
the required force or moment obtained from inverse dynamics. 
In Fig. 15, the tracking errors of the end-effectors for the 
RSMC are shown. Running several simulations with various 
control parameters shows that for such a complicated highly 
nonlinear dynamic system with on–off actuators, the conven-
tional SMC cannot successfully control the system. This 
shows the absolute advantage of the new proposed RSMC 
compared with the conventional SMC. Fig. 16 presents the 
control force or moment in the x-direction. The other control 
inputs at the base are similar to those shown in Fig. 16, whe-
reas joint torques are almost the same as those presented in the 

Table 2. Consumed energy by the conventional SMC and the new 
RSMC compared with the nominal required value of energy. 
 

Nominal valueRSMC SMC  

18.4534 53.3674 317.0090 Consumed energy (Joule) 

1.002.8920 17.1789CIF 
 

 
 
Fig. 13. Total energy consumed by the control system (Dashed line: 
Conventional SMC; Solid line: RSMC). 

 

 
Fig. 14. Model for the on–off type actuators. 

 

 
 

 
 
Fig. 15. Tracking position errors of the SFFR end-effectors using on–
off actuators and applying RSMC (Left: First manipulator; Right:
Second manipulator). 
 

 
 

 
 
Fig. 16. Control force and control torques applied to the base of the
SFFR by on–off actuators (Left: Control torque about x direction;
Right: Control force along x direction). 
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previous case. Fig. 17 plots the estimated parameters in the 
SFFR maneuver and shows the parameters for the sub-system 
(5, 3), that is, the system indicating that its input is the force 
along the z-direction and its output is the fifth distance from 
the sliding surface. Fig. 18 depicts the parameters for sub-
system (8, 3) during the flight. As mentioned previously, until 

40sect ≈ , the manipulators remain in their home configura-
tion; afterwards, the locks of the joints are released, and their 
parameter tuning begins. This continues until both the estima-
tion and tracking errors approach zero.  

 
 

10. Conclusions 

In this paper, an efficient chattering-eliminated sliding 
mode control algorithm is introduced and applied to an SFFR 
as a highly nonlinear coupled system. A chattering phenome-
non results in significant energy dissipation and causes prac-
tical difficulties for actuators. To fulfill stability requirements, 
robustness properties, and chattering elimination, an RSMC 
algorithm is proposed to determine proper positive values for 
the coefficient of sliding condition. To solve the run-time 
problem, an explicit direct relationship between the SFFR’s 
output of actuators (force or torque) and the measurement of 
distances from the corresponding sliding surfaces is assumed. 

      
 
Fig. 17. Estimated parameters for the PEM model using the recursive Kalman filter for the direct model between actuators’ output and the mea-
surements of robot sensors (Top: CSMC system; Bottom: RSMC system; sub-system (5,3); continuous servos in the base). 

 

      
 
Fig. 18. Estimated parameters for the PEM model using the recursive Kalman filter for the direct model between actuators’ output and the mea-
surement of robot sensors (Top: CSMC; Bottom: RSMC; sub-system (8, 3); continuous servos in the base). 

 

 
 
Fig. 19. Estimated parameters for the PEM model using the recursive Kalman filter for the direct model between actuators’ output and the mea-
surement of robot sensors (discontinuous servos at the base). 
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The model is parameterized optimally using the PEM. To 
reach acceptable performance, the parameters are estimated 
recursively using the Kalman filter as a parameter estimator. 
To control the orientation and position of the SFFR, a multi-
input sliding mode control law is designed to catch a moving 
target using the estimated model in the control algorithm. The 
new approach alleviates the chattering trend. The obtained 
results show that the proposed regulated sliding mode control-
ler can significantly alleviate the chattering trend, consequent-
ly substantially decreasing energy consumption. The run time 
of the control algorithm in all simulations is also ascertained 
to decrease completely, while both estimation and tracking 
errors remain in their acceptable range.   
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